Concept-Based Document Recommendations for CiteSeer Authors

نویسندگان

  • Kannan Chandrasekaran
  • Susan Gauch
  • Praveen Lakkaraju
  • Hiep Phuc Luong
چکیده

The information explosion in today’s electronic world has created the need for information filtering techniques that help users filter out extraneous content to identify the right information they need to make important decisions. Recommender systems are one approach to this problem, based on presenting potential items of interest to a user rather than requiring the user to go looking for them. In this paper, we propose a recommender system that recommends research papers of potential interest to authors known to the CiteSeer database. For each author participating in the study, we create a user profile based on their previously published papers. Based on similarities between the user profile and profiles for documents in the collection, additional papers are recommended to the author. We introduce a novel way of representing the user profiles as trees of concepts and an algorithm for computing the similarity between the user profiles and document profiles using a tree-edit distance measure. Experiments with a group of volunteers show that our concept-based algorithm provides better recommendations than a traditional vector-space model based technique.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conceptual Impact-Based Recommender System for CiteSeerx

CiteSeer is a digital library for scientific publications written by Computer Science researchers. Users are able to retrieve relevant documents from the database by searching by author name and/or keyword queries. Users may also receive recommendations of papers they might want to read provided by an existing conceptual recommender system. This system recommends documents based on an automatic...

متن کامل

Hierarchical Topic-Based Communities Construction for Authors in a Literature Database

In this paper, given a set of research papers with only title and author information, a mining strategy is proposed to discover and organize the communities of authors according to both the co-author relationships and research topics of their published papers. The proposed method applies the CONGA algorithm to discover collaborative communities from the network constructed from the co-author re...

متن کامل

Investigating the Impact of Authors’ Rank in Bibliographic Networks on Expertise Retrieval

Background and Aim: this research investigates the impact of authors’ rank in Bibliographic networks on document-centered model of Expertise Retrieval. Its purpose is to find out what kind of authors’ ranking in bibliographic networks can improve the performance of document-centered model.   Methodology: Current research is an experimental one. To operationalize research goals, a new test colle...

متن کامل

CiteSeer: Past, Present, and Future

CiteSeer, a computer science digital library, has been a radical departure for scientific document access and analysis. With nearly 600,000 documents, it has over a million page views a day making it one of the most popular document access engines in computer and information science. CiteSeer is also portable, having been extended to ebusiness (eBizSearch) and more recently to academic business...

متن کامل

Generative Models for Authors’ Influence in Document Networks

In a document network such as citation network of scientific documents, web-logs, etc., the content produced by authors exhibit their interest in certain topics whereas some authors tend to influence other authors’ interests. In this work, we propose to model the influence of cited authors along with the interests of citing authors. Moreover, we hypothesize that apart from the citations present...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008